- Detalles
-
Publicado: 26-07-2019
-
Redacción
Este artículo es el resultado del trabajo de los ingenieros Rogier Houtman y Matti Orpana pesentado en el taller Textiles Roofs en Berlín. En él se habla sobre todo del tejido como "el material más importante para las estructuras de membrana". Para sus autores "es muy imponente visualmente, atrae mucha atención y se ve muy simple".
Para realizar este artículo sus autores confiesan que se ha realizado mucha investigación; los materiales que conforman las cubiertas textiles han sido profusamente analizados y sus propiedades están hoy en día muy definidas y adaptadas. Propiedades como transparencia, durabilidad, resistencia al fuego pero también elasticidad, fuerza son cada vez mejores.
En este artículo se explican con detalle los pormenores de estos tejidos para obtener una mejor comprensión de esas propiedades. También se explica la composición y las características de los tejidos más comúnmente utilizados, y finalmente se detalla el comportamiento estructural de cada uno de ellos.
Hilatura
Un hilo está hecho de fibras. Hay fibras naturales y fibras químicas. Las fibras naturales tienen un límite en su longitud y están enlazadas en hebras. Son lo que se llama fibras de hilado. Las fibras químicas teóricamente tienen una longitud sin fin y se llaman filamentos. La sección transversal de fibras naturales es menor a 0.1mm, mientras que las fibras químicas pueden tener secciones transversales más grandes. La forma de la sección transversal es redonda para las fibras naturales, pero puede tener cualquier forma en las fibras químicas. Para las estructuras de membrana es mejor tener un hilo con una sección transversal circular.
Las propiedades mecánicas de los materiales en la industria de la construcción normalmente se especifican en N / mm2. En textiles técnicos esto no es común porque no es fácil determinar la sección transversal de una fibra muy pequeña. Por eso es habitual determinar el peso de una fibra relacionado con cierta longitud. Cuando se conoce la masa específica de la fibra, es posible determinar un promedio de la sección transversal del material. Esta unidad de masa por longitud es el Titer y se indica con el símbolo Tex: 1 Tex de peso en gramos por 1.000m de longitud. En las fibras sintéticas es común usar decitex: 1 dtex = peso en gramos por 10.000 m de longitud.
Una fibra de poliéster, por ejemplo, con un Titer de 8,35 dtex tiene un peso de 8,35 gramos con una longitud de 10.000 m. Cuando el producto es tan pequeño, es muy difícil usarlo en procesos industriales. Por lo tanto, se hila en hilos. Un hilo posiblemente se compone de cientos de fibras.
Cuando un hilo solo tiene una fibra, se llama monofilamento. Las fibras de hilado deben estabilizarse girando alrededor del centro del hilo. Los filamentos no lo necesitan, pero facilita su manejo. La torsión influye en la tensión y en el comportamiento de los hilos. Cuanto más se tuerce el hilo más disminuye la elasticidad en comparación con la elasticidad de la fibra. Con este ajuste en la torsión las propiedades mecánicas del hilo se pueden determinar con precisión.
La caracterización de un hilo de filamento se hace de acuerdo al sistema Tex, al ue se le agregan el número de fibras y torsiones. Por ejemplo, un hilo de 2200 dtex f 200 z 60 tiene un Titer total de 2.200 dtex, hecho de 200 fibras, y el hilo se tuerce 60 veces por metro en la dirección z.
Existen varias fibras que pueden aplicarse a las estructuras de membrana. Y por tanto para cada proyecto hay que tener en cuenta qué tipo de tejido se puede utilizar. Bastantes de estas fibras tienen el potencial para aplicarse, sin embargo, sus altos costes no permiten, de momento una amplia utilización.
Fibra de algodón
Este tipo de fibra es la única fibra orgánica que se utiliza en estructuras de membrana. El arquitecto y padre de la arquitectura textil, Frei Otto, lo usó para su las primeras estructuras y hoy en día todavía se aplica en algunas estructuras. A partir de sus propiedades orgánicas, este material está sujeto al riesgo de hongos y humedad. Cuando se utiliza de forma permanente tiene una vida útil prevista de unos 4 años.
Poliamida 6.6 (Nylon) La fibra de nylon tiene una mala resistencia a los rayos UV, se hincha cuando se moja y es de poca relevancia en la arquitectura textil. Donde sí se utiliza muy frecuentemente es en la industria de la vela por su poco peso y alta resistencia.
Poliéster
La fibra de poliéster junto con la fibra de vidrio es la más común en la arquitectura textil y considerado como un producto estándar. Tiene una buena resistencia a la tensión y gran elasticidad. Debido a su considerable potencial de alargamiento el material permite hacer pequeñas correcciones durante la instalación. Las propiedades mecánicas del material disminuyen por la luz solar y con el envejecimiento.

Tabla 1. Propiedades de los materiales que sirven de base para los tejidos.
Fibra de vidrio
El material del que está hecho la fibra de vidrio es, por supuesto, vidrio, donde se hilan hilos que tienen una cierta capacidad de flexión. La fibra de vidrio tiene una alta resistencia a la tracción pero sigue siendo frágil para estos usos y tiene baja tensión elástica. Debido a su fragilidad, el material debe ser manejado con cuidado y necesita una fabricación muy precisa. El envejecimiento ejerce poca influencia sobre el material lo que tiene un tremendo impacto en la vida útil de la estructura. Pero la resistencia a la tracción del material disminuye cuando se somete a la humedad.
Fibra de aramida
Este es un tipo relativamente nuevo de fibra, descubierto simultáneamente por Akzo (fibra de Twaron) y DuPont (Fibra Kevlar). El material tiene una alta resistencia a la tracción y es químicamente resistente. Un inconveniente es su baja elasticidad y la poca resistencia a altas temperaturas y rayos UV.
Composición del material base
El tejido que se usa normalmente para estructuras de membrana se hace a partir de un material estructural base tejido, y que está cubierto por ambos lados para protegerlo del agua y los contaminantes, el llamado recubrimiento. Hay varias formas de hacerlo de forma coherente. El método básico se llama unión o enlazado de canasta (basket bond), donde los hilos de la trama pasan por los hilos de urdimbre alternando encima y debajo. Hay muchas variedades posibles, como pasar tres hilos de urdimbre por debajo y uno por encima.

Fig. 1 Unión de canasta (izquierda) y unión de Panamá
Igual que en la industria de la alfombra se pueden hacer todo tipo de patrones, pero para un uso estructural esto no es suficiente y por lo tanto sólo la unión de canasta y la de Panamá (Panama Bond) se utilizan para estructuras de membrana. La unión tipo Panamá indica que la operación de tejido se realiza con más de un hilo a la vez. 12 * 12 Panamá significa que cada centímetro de tejido contiene 12 hilos en la urdimbre y 12 en la trama. Por otro lado también es habitual decir 2-2 Panamá o 3-3 Panamá, lo que significa que la operación de tejido se realiza con dos o tres hilos cada vez. El Panama Bond tiene un mejor comportamiento mecánico que el de canasta debido a los múltiples hilos que se usan.
Revestimientos
En la tabla 1 se describen las fibras a partir de las que se teje el tejido. Para crear tejidos duraderos y resistentes al agua la mayoría de las fibras necesitan un recubrimiento en ambos lados. Hay varios recubrimientos disponibles, los mas comunes son los de PVC, teflón y revestimientos de silicona. A veces no se aplica un revestimiento sino que se aplica una lámina sobre el tejido. El recubrimiento se utiliza a menudo para unir las diferentes partes del membrana. La adherencia del recubrimiento al tejido es un indicador de la resistencia de las costuras. La adherencia al aplicar una lámina al tejido es mucho menor y por lo tanto requiere otros métodos de conexión para el costuras.
Recubrimiento de PVC sobre tejido de poliéster
Este tipo de recubrimiento se utiliza principalmente en tejido de poliéster, ya sea revestido o laminado sobre el tejido. Docenas de fabricantes proporcionan este material, cuya oferta va desde tejidos laminados para carpas de alquiler hasta tejidos recubiertos pensados para instalaciones permanentes y con una esperanza de vida superior a los 20 años. El tejido se ofrece en numerosos colores, tiene tres acabados de recubrimiento diferentes (PVDF, PVF, Acrílico) y se considera que es un material resistente al fuego (ver figura 2a).
Revestimiento de PVC en tejido de aramida
Otro interesante material de construcción ligero es la fibra de aramida utilizada para tubos de aire. Estos tubos de aire de alta presión puede asumir la función de soporte como una viga, un arco o una rejilla convirtiéndose en una parte de la estructura. Las fibras de aramida se trenzan en formas curvas y se unen a una membrana interna de uretano para crear arcos inflables sin costuras de aproximadamente 30 psi. El tejido de aramida se encuentra envuelto de una cubierta de PVC para proteger las fibras de la degradación por UV.
Recubrimiento de PTFE sobre tejido de fibra de vidrio
El tejido de fibra de vidrio recubierto de teflón es el más duradero de todos los tejidos arquitectónicos recubiertos. Se empleó por primera vez para una cubierta en 1973 para el centro de estudiantes de La Verne College en California (figura 2b), y tiene una vida útil de más de 30 años. Solamente se puede utilizar para aplicaciones permanentes y no es reubicable. El tejido es considerado incombustible, y como tal cumple con los códigos de construcción más estrictos en todo el mundo. Una vez colocado tiene un aspecto amarillento que se torna blanco después de un par de meses de exposición al sol. Con translucidez de hasta el 25% se ha utilizado en proyectos como la cúpula de Georgia, el aeropuerto de Denver y en el Millennium Dome.
Recubrimientos de silicona sobre tejido de fibra de vidrio
La fibra de vidrio recubierta de silicona data de 1981, y se ha utilizado, por ejemplo en las cúpulas de tipo tensegrity para los Juegos olímpicos de Seúl. Esta goma de silicona es más flexible que el teflón, y la fibra de vidrio recubierta con él es menos probable que se dañe durante el transporte y montaje que la fibra de vidrio recubierta con teflón. La mayor ventaja, sin embargo, es que la tela se puede fabricar con gran translucidez. Que alcanza el 25% en las membranas arquitectónicas y un 90% para el material de revestimiento más fino. Con múltiples capas de membrana translúcida y fibra de vidrio se puede crear una muy buena iluminación natural así como una retención de calor muy alta. La silicona (Si) es uno de los materiales más abundantes en la tierra y constituye la base tanto de la fibra de los hilos de fibra de vidrio como de la goma de silicona del revestimiento. Esta similitud en la estructura química permite el diseño de tejidos altamente translúcidos, mientras que la protección contra el agua proporcionada por el recubrimiento de silicona asegura una larga vida útil de la fibra de vidrio. Con respecto al coste y la facilidad de utilización, la fibra de vidrio recubierta de silicona se puede posicionar entre la fibra de vidrio recubierta de teflón y el PVC recubierto de poliéster.

Tabla 2. Propiedades de los tejidos.
Recubrimiento de silicona en tejido de poliéster
Un tejido ideal combinaría bajo coste, fácil manipulación y el excelente comportamiento estructural del Poliéster recubierto de PVC con la translucidez y la larga vida de la fibra de vidrio recubierta de silicona, y la alta reflectividad y resistencia a la suciedad del teflón.
Propiedades mecánicas de los tejidos
El tejido se comporta de forma especial debido al proceso de tejido. Los materiales de construcción convencionales se caracterizan por su comportamiento elástico lineal e isotrópico. Solo cuando se alcanza el límite elástico y el área de rendimiento comienza se deben aplicar diferentes reglas. Los materiales utilizados en la arquitectura textil tienen comportamientos completamente diferentes y actúan de la siguiente manera:
• No lineales, eso significa que el comportamiento tensión-deformación de los materiales no se puede modelar con una linealización de la curva
• Anisotropía, lo que significa que el material en sí tiene dos direcciones dominantes, lo que hace que todas las propiedades mecánicas importantes dependan de la dirección.
• No elásticos, eso significa que el comportamiento de los materiales depende de la carga añadida.
No linealidad Al principio se explicará la no linealidad. Una muestra del tejido se prueba en una máquina de tests uniaxiales. En la figura 3 se ve el resultado típico a partir de dicha prueba. Se muestran el estrés y la tensión.
Fig. 3 Carga uniaxial típica de la curva de tensión-deformación.
Está claro que no existe una relación lineal entre los estrés y tensión. Sólo con mucha creatividad es posible dibujar una línea recta a lo largo de la curva. A continuación se explica la anisotropía. Se han cortado varias tiras en el tejido pero con una orientación diferente. (Ver figura 4).

Fig. 4 Anisotropía mostrada en diferentes orientaciones de fibra.
Es obvio que en las diferentes direcciones de la fibra hay un comportamiento distinto. Este comportamiento es causado por la presencia del material base tejido en su interior. Durante el proceso de tejido, los hilos de urdimbre se tensan en la máquina de tejer. Los hilos de trama se tejen a su vez en patrones alternativos, y dan como resultado un proceso de tejido en el que los hilos de la urdimbre tiran hacia arriba o hacia abajo y los de la trama quedan arrastrados entre ellos. En los largos rollos de tejido, los hilos de la trama que corren de lado a lado, quedan retorcidos alrededor de los hilos de urdimbre rectos, que cubren la longitud total. En la mayoría de los procesos de recubrimiento esta configuración se mantiene. El fabricante de tejido de poliéster, Serge Ferrari, tensa los hilos de la trama antes del recubrimiento.

Fig. 5 Izquierda: configuración de urdimbre y trama antes del esfuerzo; derecha: configuración de urdimbre y trama después del esfuerzo.
El efecto de esta configuración sobre las propiedades mecánicas es que la tensión no es la misma en la urdimbre que en la trama. Cuando se tensa en la dirección de la urdimbre habrá poca deformación porque las fibras ya están rectas. Cuando las fibras de la trama se tensan, se "rizan", pero se vuelven a estirar y por lo tanto tienen un gran potencial de deformación respecto a la dirección de la urdimbre. En la figura 5 se muestra la configuración antes y después de tensar. El último aspecto, la no elasticidad se explica por medio de los mismos ejemplos, pero llevados a cabo más de una vez sobre la misma muestra (ver figura 6).

Fig. 6 Comportamiento no elástico del material tejido.
Se puede observar que la curva de carga es diferente de la curva de descarga. Cuando comienza el segundo ciclo de carga, es distinto del primero, del mismo modo que la segunda curva de descarga difiere de la primera. Cuando los ciclos de carga se repiten, cada ciclo de carga y descarga es diferente, aunque las diferencias son cada vez más pequeñas. La diferencia permanece entre la carga y la descarga, lo que resulta en un alargamiento permanente del tejido. El tamaño de este estiramiento depende de las cargas aplicadas. Todos estos aspectos actúan simultáneamente, por lo tanto es muy difícil describir el comportamiento mecánico del tejido con un único modelo. Para obtener una mejor comprensión de esos aspectos es mejor detallar un breve resumen del proceso de diseño. Esto hace que sea más fácil de explicar cuando se deben considerar diferentes aspectos materiales.
Proceso de diseño
El diseño de una estructura de membrana comienza con el formfinding, esto es, la búsqueda de la forma. Como hay una doble curvatura opuesta, hay que encontrar un equilibrio entre el pretensión en la membrana y las condiciones del contorno. Esto se hace normalmente por medio de software específicos.
Modelar la membrana como una red de dos vías es una base muy representativa para el análisis informático. Una la dirección de la malla puede verse como los hilos de la urdimbre, la otra dirección puede verse como la trama. Cuando se establecen las condiciones del contorno se obtiene la primera forma.
Esto puede servir como una primera imagen para mostrar al cliente, cómo ve la forma y si cumple con los requisitos necesarios. Cuando se decide continuar con la estructura es necesario pensar en los patrones que van a conformar el diseño. La membrana se construye a partir de pequeñas piezas a partir de rollos de un cierto ancho. Estas piezas se sueldan entre sí y forman la membrana. Debido a la anisotropía del material, es necesario orientar la hilos de urdimbre y trama en las direcciones de la cabeza de la curvatura. El comportamiento de la carga quedará influenciado considerablemente cuando la dirección de la cabeza del tejido no corresponda con la dirección de la cabeza de la curvatura (ver figura 7). Hay mucha más posibilidad de desvío dado que la malla no tiene resistencia al cizallamiento. Por tanto la rigidez de la forma depende de la adherencia del revestimiento al tejido.

Fig. 7 Dos formas de orientación de la malla: resultan en la misma forma pero con diferente comportamiento de carga (1 kN / m2 carga ascendente)
Cuando se conoce la dirección principal de la anisotropía, los puntos de partida para la rigidez de la estructura se pueden determinar. Con estos valores se realiza un análisis estadístico, lo que da resultados sobre las fuerzas en la estructura primaria y en la membrana. Los resultados del análisis sobre tensiones y deformaciones se utilizan para comprobar los límites de carga y los modos de fallo. Para las membranas los siguientes modos de fallo son críticos:
• Fallo de la membrana bi-axial con su cargada dentro de la vida estimada de la estructura.
• Fallo de una costura o conexión de membrana a la estructura primaria.
• Fallo de rotura durante la instalación o debido al vandalismo.
El primer modo de fallo depende de los factores de seguridad aplicados sobre la resistencia última del material. La dificultad de la propiedad material no elástica se afronta de una manera muy sencilla. Sólo se utiliza una pequeña cantidad de la capacidad de tracción de la pieza. Dependiendo del tipo de tejido utilizado existe el riesgo de fallo por fragilidad (fibra de vidrio) o gran deformación plástica (poliéster). Así que para una carga permanente a veces se usa una relación f 1/8, para cargas de viento se usa 1/4 y para cargas de nieve se usa 1/5 porque puede durar varias semanas y por lo tanto se considera una carga semipermanente. Según la norma DIN, la carga de diseño no puede ser mayor a 0.85/3.1 * resistencia a la tracción de la tira. Otro enfoque es que los valores permanezcan por debajo de la resistencia al desgarro del material para prevenir la rotura por desgarro. Esto resulta en una relación de 1/5-1/6.

Tabla 3. Propiedades mecánicas de los tejidos más comunes.
Así que hay varias maneras para determinar la carga de tensión admisible. El segundo modo de fallo, el fallo de una unión o costura, debe evitarse comprobando qué ancho de costura se necesita y a qué temperatura. Cuando la temperatura sube las costuras se debilitan. Por encima de los 70º la fuerza de la costura es considerablemente más bajo.
El fallo de rotura (el tercer modo) ocurre a menudo durante instalación. Comienza en un borde abierto o en un agujero en el tejido. Es crítico, por lo tanto, que cada pieza del tejido se sostenga por los bordes. Para conseguir esto, comúnmente se utiliza un sistema de cableado por el borde de la membrana en el interior de manguitos continuos. Otra causa de desgarro es la actuación de fuerzas tangenciales en la membrana. Cuando no se proporciona una apropiación adecuada de estas fuerzas, el tejido puede desgarrarse bajo una carga pesada. Cuando la calidad de la membrana se ha determinado, ya se pueden hacer los patrones de corte para la forma final.
La forma tiene un cierto grado de pre-tensión, y los patrones deben poderlo compensar. La compensación necesaria depende de la tensión del tejido bajo el pre-tensado en la membrana. Esta tensión necesita estudiarse mediante pruebas bi-axiales en el tejido bajo condiciones de pre-tensado similares a las existentes en la membrana.

Fig. 8 Posible esquema de diseño.
Bibliografía/Fuentes
1. Nicholas Goldsmith: "Materials for the new Millennium", actas de la conferencia sobre Large Span Structures, Bath, 2000.
2. Michael Haist, Christoph Niklasch, Yahya Bayraktarli: "Vorgespannte Membrantragwerke", Seminario Leichte Flächentragwerke, TU Berlín 1998/99.
3. Horst Berger.- "Light structures, structures of light" Birk-hduser Verlag Berlin, 1996.
4. Rogier Houtman: "From computer model to realised structure", TU Delft, 1996.
5. Matti Orpana: "Detailing" actas de Textile Roofs 1995, Berlín.
6. Tony Robbin: "Engineering a new architecture", Yale University Press New Haven y Londres, 1996.
7. Wemer Sobek, Martin Speth: "Von der Faser zum Gewebe "página 74-81 DB n. 9 de septiembre de 1993.
8. Rainer Blum: "Leicht und Weit" páginas 200-224, Deutsche Forschungsgemeinschaft Weinheim, 1990.
Rogier Houtman trabaja en el departamento de diseño e ingeniería de la empresa Tentech B.V.
Matti Orpana es ingeniero estructural especializado en estructuras de membrana.
- Detalles
-
Publicado: 16-07-2019
-
Redacción

Revista Toldo / Josep Maria Pallarès
La Directiva 89/106/CEE del Consejo de 21 de diciembre de 1988 establece unas disposiciones legales, reglamentarias y administrativas de los Estados Miembros sobre los productos de construcción; para ello estos productos solo podrán comercializarse si cumplen unos requisitos esenciales durante un período de vida económicamente razonable, siendo uno de estos el ahorro energético y aislamiento térmico.
Para ello, para hablar sobre la eficiencia energética debemos tomar como referencia la Directiva 2002/ 91/CE del 16 de diciembre de 2002, que tiene como objetivo el de fomentar la eficiencia energética de los edificios de la Comunidad, teniendo en cuenta las condiciones climáticas exteriores y las particularidades locales, así como los requisitos ambientales interiores y la relación coste-eficacia".
Paralelamente el Real Decreto 314/2006 , del 17 de marzo, aprueba el llamado Código Técnico de la Edificación que es el marco normativo por el que se regulan las exigencias básicas de calidad que deben cumplir los edificios, incluidas sus instalaciones, para satisfacer los requisitos básicos de seguridad y habitabilidad, en desarrollo de lo previsto en la disposición adicional segunda de la Ley 38/1999, de 5 de noviembre, de Ordenación de la Edificación, LOE.
Sentadas estas bases, debemos empezar por definir cual es el objetivo básico del «Ahorro de energía (HE) » que consiste en conseguir un uso racional de la energía necesaria para la utilización de los edificios, reduciendo a límites sostenibles su consumo y conseguir asimismo, que una parte de este consumo proceda de fuentes de energía renovable, como consecuencia de las características de su proyecto, construcción, uso y mantenimiento.

El Documento Básico «DB-HE Ahorro de Energía» especifica parámetros objetivos y procedimientos cuyo cumplimiento asegura la satisfacción de las exigencias
básicas y la superación de los niveles mínimos de calidad propios del requisito básico de ahorro de energía, tales como:
HE 1: Limitación de demanda energética
HE 2: Rendimiento de las instalaciones térmicas
HE 3: Eficiencia energética de las instalaciones de iluminación
HE 4: Contribución solar mínima de agua caliente sanitaria
HE 5: Contribución fotovoltaica mínima de energía eléctrica
En relación al sector de los toldos, persianas y celosías nos remitiremos al marco normativo de la UNE-EN 14501/06 que se designan como "dispositivos de protección solar". Uno de los objetivos de esta normativa es la especificación de parámetros y clasificaciones para cuantificar las propiedades de dos aspectos esenciales
1.- El confort térmico: evaluado a través de factores como:
El factor solar (transmitancia de energía solar total)
El factor de transferencia de calor secundario
La transmitancia solar directa.
2.- El confort visual: especificando criterios como:
El control de la opacidad
Privacidad nocturna
Contacto visual con el exterior
Control del deslumbramiento
Uso de luz diurna
Reproducción de colores.
Los principales términos de aplicación y definiciones, relacionados con el confort térmico y visual, son los siguientes:
• Transmitancia τ : Relación entre el flujo trasmitido y el flujo incidente.
• Reflectancia ρ: Relación entre el flujo reflectado y el flujo incidente.
• Absorción α: Relación entre el flujo absorbido y el flujo incidente
• Coeficiente de apertura: Relación entre la superficie de las aperturas y la superficie total de la tela.
• Factor solar g (transmitancia de energía solar total): Relación entre la energía solar total transmitida en una habitación a través de una ventana y la energía solar incidente de la ventana.
g es el factor solar sólo del acristalamiento;
gtot es el factor solar del combinado acristalamiento y dispositivo de protección-solar.
• Factor de sombreado Fc: Relación del factor solar del combinado acristalamiento y dispositivo de protección solar gtot y el del acristalamiento solo g: gtot
Fc = ______
g
• Factor de transferencia de calor interno secundario qi,tot: La parte de la radiación total absorbida que fluye al interior a través del acristalamiento combinado con el dispositivo de sombreado.
• Índice de reproducción de color Ra: Este índice se designa para expresar sintéticamente una evaluación cuantitativa de la diferencia en color entre ocho colores de ensayo iluminados directamente por la iluminación normalizada D65 y por la misma iluminación trasmitida a través del dispositivo de protección solar.
• Temperatura operativa θop: Temperatura uniforme de un local en el que un ocupante podría intercambiar la misma cantidad de calor por radiación más convección como en un ambiente real no uniforme.

El Confort térmico
El confort térmico se rige principalmente por la temperatura operativa θop en el interior de un local (temperatura uniforme de un local en el que un ocupante podría intercambiar la misma cantidad de calor por radiación más convección como en un ambiente real no uniforme).
θop depende la temperatura del aire, de la velocidad del aire y de las temperaturas de las superficies contiguas Por tanto es importante,
"Controlar las aportaciones solares para limitar la temperatura operativa".
Los dispositivos de protección solar influyen en el confort térmico en tres aspectos:
1. La temperatura operativa media y/o las cargas de enfriamiento vienen influidas por las aportaciones solares que dependen de las dimensiones de las ventanas y la transmitancia total de energía solar, gtot.
2. Pueden causar localmente valores más altos de θop cuando son irradiadas por el sol debido a más altas temperaturas sobre la superficie interna del acristalamiento o dispositivo de protección solar. Este efecto se cuantifica por el factor de trasmisión de calor interior secundario qi,tot.
3. Pueden impedir que personas y su ambiente en el local sean irradiadas directamente. Este efecto se cuantifica por la transmitancia directa – directa, Te,dir-dir.
Control de las aportaciones solares. Transmitancia total de energía solar gtot
La limitación de aportaciones solares es el aspecto más importante del confort térmico en verano cuando no hay un sistema mecánico de enfriamiento.
Las aportaciones solares son directamente proporcionales a la transmitancia total de energía solar gtot.
gtot. depende del acristalamiento y del dispositivo de protección solar.
Este valor debe indicarse para el etiquetado general de productos. La influencia de los dispositivos de protección solar sobre las aportaciones solares puede también representarse por el factor de sombra Fe. El factor de sombra depende no sólo del dispositivo de protección solar sino también del acristalamiento. Este también se utiliza para la caracterización de los productos.
Para la determinación de la transmitancia total de energía solar gtot existen dos procedimientos:
a) El método simplificado: Condiciones de instalación desconocidas.
b) El método detallado: Condiciones de instalación conocidas.
La clasificación de la transmitancia de energía solar total gtot especifica en la tabla siguiente clasificación
Aportación de calor secundario. Factor de transferencia de calor secundario qi,tot
La energía solar total trasmitida a través de una fachada se compone de dos partes:
. La radiación solar, medida por el factor la transmitancia solar directa Te,tot
. El calor (radiación térmica y convección) medido por el factor de transferencia de calor secundario qi,tot..
FOTO protección solar en fachada
El factor de transferencia de calor secundario qi,tot de la combinación del acristalamiento y el dispositivo de protección solar debe ser calculado con la siguiente fórmula:
Este valor debe indicarse para el etiquetado general de productos.
Para la determinación del factor de transferencia de calor secundario qi,tot existen dos procedimientos:
a) El método simplificado: Condiciones de instalación desconocidas.
b) El método detallado: Condiciones de instalación conocidas.
Clases de prestación:
Protección contra la trasmisión directa. Factor de transmitancia solar normal/normal Te,n-n
Para poder determinar la capacidad de un dispositivo de protección solar para proteger a las personas y los ambientes de una radiación directa, se realiza a través de la transmitancia solar directa/directa Te,dir-dir del dispositivo, combinado con un acristalamiento. Por razones de simplicidad, el factor de transmitancia solar normal/normal Te,n-n se usa como medida para esta propiedad.
FOTO El control Solar automático reduce la radiación solar y optimiza la luz natural.
Confort Visual
El confort térmico junto con el confort visual forman parte de las propiedades que debe tener una celosía y persianas para los edificios.
El confort visual está formado por diferentes parámetros que clasifican y cuantifican los diferentes productos siendo los más característicos: el control de opacidad, el control de deslumbramiento, la privacidad nocturna, el contacto visual con el exterior, la utilización de luz diurna y la reproducción de colores.
Dependiendo de la geometría de la radiación incidente y transmitida, los componentes de la transmisión luminosa tienen que ver con diferentes aspectos del confort visual.
Cuando el hueco está directamente iluminado por el sol:
- la radiación incidente es principalmente direccional;
- la radiación transmitida es parcialmente direccional (τv,dir-dir), parcialmente difusa (τv,dir-dif);
- el flujo luminoso total transmitido es la suma de estos dos componentes.
FOTO transmisión DIRECTA
Estas características dependen del ángulo de incidencia θ
El valor τv,dir-h es representativo de la reducción global de luz natural por el dispositivo de protección solar cuando la luz viene desde una dirección específica.
La parte directa de la radiación transmitida τv,dir-dir representa el paso de luz a través de los orificios en el dispositivo de protección solar bajo el ángulo de incidencia θ.
Esto permite el reconocimiento de formas y tiene una influencia favorable sobre la visión del exterior pero es desfavorable para la privacidad nocturna.
Puede ser también la base de dos factores de no confort visual como son:
- la visión directa del disco solar.
- La formación de lunares solares sobre el suelo o los muebles de la oficina.
FOTO transmisión difusa
La parte difusa τv,dir-dif de la radiación transmitida se traduce en una luminancia propia del dispositivo de protección solar que aparece como fuente luminosa.
Esto puede constituir un factor de no confort, bien a partir de un valor excesivo de la luminancia en si misma o a partir del contraste entre la luminancia del dispositivo de protección solar y la de sus alrededores.

Los dispositivos de protección solar se clasifican según los siguientes criterios:
1. Control de opacidad
2. Control de deslumbramiento
3. Privacidad nocturna
4. Contacto visual con el exterior
5. Utilización de luz diurna
6. Reproducción de colores
Estos criterios dependen de tres factores ópticos principales:
- τv,n-n, transmitancia luminosa norma/normal;
- τv,n-dif parte difusa de la transmitancia luminosa;
- τv,dif-h transmitancia luminosa difusa/hemisférica,
Las clases de prestación para el control de deslumbramiento, privacidad nocturna, contacto visual con el exterior, utilización de la luz natural se evalúan en:
Influencia sobre el confort visual
1.-Control de opacidad
Representa la capacidad de una celosía interior, toldo o persiana en posición desplegada y cerrada para impedir la visión de luz exterior
La prestación de oscurecimiento y de opacidad de los productos se expresa por el nivel de iluminación bajo el cual no es perceptible luz alguna detrás del dispositivo.
La prestación de opacidad se especifica de acuerdo con la clasificación de telas y la clasificación de productos.
2.-Control de deslumbramiento
Se caracteriza por:
La capacidad del dispositivo de protección solar para controlar el nivel de iluminación de los huecos y para reducir los contrastes de iluminancia entre diferentes zonas dentro del campo de visión debidos a lunares solares sobre la superficie, parte del cielo vista a través de la ventana, visión del disco solar a través del dispositivo de protección...etc
Capacidad del dispositivo de protección solar para prevenir la reflexión disturbadora sobre la exposición visual debida a la luminancia de la ventana y superficies adyacentes
El control de deslumbramiento se cuantifica por los parámetros τv, n-dif y τv, n-n.
3.- Privacidad nocturna
La privacidad nocturna es la capacidad de una celosía interior, toldo o persiana en posición totalmente desplegada o en posición totalmente desplegada y cerrada, para proteger a las personas de las miradas exteriores durante la noche en condiciones luminosas normales de visión exterior.
La privacidad nocturna se cuantifica por los parámetros τv, n-dif y τv, n-n.
4.- Contacto visual con el exterior
El contacto visual con el exterior es la capacidad del dispositivo de protección solar para permitir visibilidad exterior cuando está completamente desplegado. Esta función viene afectada por diferentes condiciones luminosas durante el día.
Se caracteriza por dos parámetros:
transmitancia luminosa normal/normal: τv, n-n
parte difusa de transmitancia luminosa: τv, n-dif
El contacto visual con el exterior se cuantifica por los parámetros τv, n-dif y τv, n-n.
5.- Utilización de la luz diurna
Se caracteriza por:
- la capacidad del dispositivo de protección solar para reducir el periodo de tiempo durante el cual se requiere luz artificial;
- la capacidad del dispositivo de protección solar para optimizar la luz diurna disponible.
La utilización de luz diurna se cuantifica por el parámetro τv,dif-h
6.- Reproducción de colores
Dispositivo de protección solar sin acristalamiento.
Para la determinación del índice de reproducción de colores Ra se utiliza el procedimiento establecido en la norma EN 410 pero con la modificación de que la transmitancia espectral del acristalamiento τ (λ) se sustituye por la del dispositivo de protección solar τ (λ)n-h
Dispositivo de protección solar con acristalamiento.
Para la determinación del índice de reproducción de colores Ra del conjunto vidrio dispositivo de protección solar, se utiliza el procedimiento establecido en la norma EN 410 pero con la modificación de que la transmitancia espectral del acristalamiento τ (λ) se sustituye por la del conjunto acristalamiento y dispositivo de protección solar τ (λ)n-h, tot
Josep Maria Pallarès es responsable de la División de Certificación de Leitat.